- Home
- /
- News
- /
- Industry News
Vibration Analysis of Electric Induction Motors
An electric motor is an electromechanical machine that converts electrical energy into mechanical energy. Electric motors fall into two broad groups: direct current (DC) motors and alternating current (AC) motors; alternating current motors are divided into single-phase and polyphase motors.
Polyphase motors can be induction or synchronous. Then, induction motors can be wound rotor or squirrel cage rotor. The squirrel cage rotor motors are the most widely used engines in today's industry. Induction motors with squirrel cage rotors are relatively simple, very reliable, and low maintenance machines.
Induction motors operate under the principle of electromagnetic induction and are also known as asynchronous motors since their rotation speed (RPM) does not reach the synchronous frequency of the electromotive field.
Induction motors are manufactured for various applications and requirements, operating speed, power, and efficiency, among other parameters, are considered for design, there are low, medium and high power motors, they are also manufactured to operate at various speeds; the amount of poles of an engine determines its operating speed.


Vibration measurement points
As we have already discussed in a general way in our article, "Where to place the vibration sensor", in an electrical motor, the measurement points for vibrations must correspond to the centerline of the shaft, on the bearing housing. Ensure a stable mounting on a solid part. Whenever possible, make measurements in the horizontal (H), vertical (V), and axial (A) directions of each bearing.
On the non-drive end position, it will not always be possible to place the sensor on the centerline, since the protective cover of the fan obstructs it, however, getting as close as possible to the bearing is recommended. Monitoring points should be marked, and data on the same locations are always taken.
Some motor housings are made of aluminum; therefore, a magnet does not adhere; in these cases it can be held by hand by pressing firmly. Avoid the use of extensions as these suppress high frequency vibrations. In some applications, accessories are mounted for sampling vibrations; they are devices that are attached using glue or bolts, creating a fixed and firm to place an accelerometer.
Safety is the priority to select the vibration monitoring points; we must ensure that we do not make contact with rotating or hot parts, the safety in data collection takes care of the instruments and our health.
Typical failures in electric motors detectable by vibration analysis
Imbalance
In electric motors, an imbalance is usually caused by one of the following causes:
Wrong balancing procedure in workshop.
Wrong selection of balancing quality grade.
Use of keyway out of specification.
Do not consider keyway during workshop balancing.
Deformation of the rotor due to excessive temperature.
Wear or breakage of the cooling fan.
Wear or breakage of the coupling.
Breaking or improperly mounting the cooling fan.
When an imbalance is diagnosed in an electric motor, the following actions may be recommended:
Review the operation and maintenance history to verify when the problem arose: in operation, after maintenance, new engine, etc. This will help with root cause analysis.
Verify the procedures and the quality grade of balancing for the application.
Inspect the coupling and cooling fan, verify its integrity and conditions.
Perform a runout check to detect deformations in the rotor.
Check the calibration of the balancing machine.
Do a precision balancing according to the application, criticality, and characteristics of the motor.
Check the cooling fan.
Misalignment
In electric motors, misalignment is usually caused by one of the following causes:
An inappropriate alignment procedure.
Inappropriate calculation of alignment standards or tolerances.
Thermal expansion.
Weakness or inappropriate support base.
Soft foot or wraped motor base.
Failures in the coupling, excessive runout or deterioration.
When misalignment is detected in an electric motor, could recommend the following:
Evaluate staff procedures and training.
Do precision alignment by applying the relevant standards.
Measure and correct soft foot.
Evaluate the condition of the base and the coupling.
Evaluate the influence of thermal expansion and consider this in the alignment procedure.
Bearing issues
In electric motors, bearing problems are usually caused by one of the following causes:
Bad assembly, excessive preload or wear of bearing housing.
Failures in the lubrication procedure, excess or deficiency of lubricant.
Lubricant of poor quality or incompatible with the application.
Contaminated lubricant.
Excessive vibration during operation.
Grounding wiring failures.
When bearing issues are detected in an electric motor, the following actions may be recommended:
Analyze the characteristics of the damage: corrosion, erosion, wear ...
Evaluate the bearing assembly procedure.
Verify the balancing and alignment.
Verify the right selection of the bearing.
Check the dimensions and tolerances of mounting in housing and rotor.
Optimize the lubrication process.
Check earthing wire.
Eccentricity
In electric motors , eccentricity is usually caused by one of the following causes:
Excessive wear of bearing or bearing housing.
Wear in the rotor or bearing.
Misalignment between housings.
Deformation of the rotor.
Eccentricity of coupling holes or pulleys.
When eccentricity is detected in an electric motor, the following actions may be recommended:
Check alignment between bearing housing or motor end shields.
Check wear on bearing housings.
Measure the runout in coupling, pulleys, and rotor.
Rotating looseness
In electric motors, rotating looseness or clearances are usually caused by one of the following causes:
Wear of bearings or housing.
Wear of babbit bearings.
Bad adjustment of parts.
When gaps are detected in an electric motor, the following actions may be recommended:
Dimensional checks on bearing housing, bearings and rotor.
Structural issues
In electric motors, structural issues are usually caused by one of the following causes:
Weak or damaged bases due to corrosion.
Defective anchor bolts or bolts.
Loose screws or anchor bolts.
When structural issues are detected in an electric motor, the following actions could be recommended:
Evaluate the condition of the bases, both of the machine and the fundation.
Evaluate the condition of the anchor bolts.
Adjust bolts to the right torque.
Electrical issues
In electric motor, electrical issues tend to originate from any of the following causes:
Uneven air gap between rotor and stator.
Loose or broken rotor bar.
Poor quality of electric power: voltage imbalance, harmonics ...
Failures from frequency inverters.
Excess load.
Excess of motor starts and stops.
Insulation problems.
When electrical problems are detected in an electric motor, the following actions may be recommended depending on the symptoms:
Perform a power quality analysis.
Make a study of air gap and evaluate the origin (rotor/stator).
Perform electrical tests on the motor (insulation quality).
Evaluate the integrity of the connections in the rotor bars.
Analyze the amount of successive startups.
Resonance
In electric motors, resonance is usually cause by any of the following causes:
Operate near a critical speed or natural frequency of the system.
Changes in structural stiffness.
Speed changes that bring the motor closer to a critical speed (variable speed motors).
When resonance is detected in an electric motor, the following actions may be recommended:
Perform a test to calculate critical speeds.
Make an impact test to verify if any natural frequency is being excited.
Evaluate if the stiffness of the system has changed.
Key: Vertical 3 Phase ac induction motors, electric motor, Vertical Inverter Duty motor, DC Brake motor Oil Pressure Motor, helical gear motor, AC mini Induction DC gear motor, Gear reducer motor series, NMRV NRV worm reducer series, Worm reducer series, Horizontal Inverter duty, worm gear series, ac motor, vertical gearmotor, helical horizontal gearmotor, gear reduce motor, bevel gearmotor, cyclo gear motor, NMRV gear motor, worm reducer
Newer articles
- What are gearmotor performance curves? (21/08/2020)
- What’s the difference between standard and inverter-duty gearmotors? (13/08/2020)
- What are gearmotors used for position-control applications? (12/08/2020)
- What are gearmotors used for speed-control applications? (27/08/2020)
- AC Motors vs DC Motors (18/08/2020)
- Using Dynamic Electric-Motor Monitoring to Identify Mechanical Issues (18/08/2020)
- Single Phase Gear Motors: Features And Benefits (04/08/2020)
- Why electric motor should use speed reducer (gearbox)? (15/08/2020)
- 3 Ways to Improve Electric Motor Maintenance (19/08/2020)
- The Case for Drum Motors for Your Food Conveyor System (03/08/2020)
Older articles
- Gearmotors: Types and Industrial Applications (03/03/2020)
- Five tips for better electric motor maintenance (27/07/2020)
- Gear Motor Maintenance (28/07/2020)
- Top 10 tips for industrial gearbox inspection and maintenance (30/07/2020)
- Right angle gear motors & parallel shaft gear motors: performance comparison (25/07/2020)
- Design or redesign of mechanical power transmissions? (27/07/2020)
- Step motor: When to use it, and why (28/07/2020)
- What is a servo motor and when is it used? (30/07/2020)
- Why electric motor should use speed reducer (gearbox)? (31/07/2020)
- Methods to optimize electric motor efficiency (01/08/2020)
Join