- Home
- /
- News
- /
- Industry News
Design Considerations for Gearmotor Applications
To select the best gearmotor for an application, one must go into more detail than just selecting the best suitable output speed and torque. Here are five criteria you should consider.
1 Gearmotor Mounting Orientation
Gearmotors are typically designed to be mounted with the gearbox level with the motor, and with the drive shaft in horizontal orientation. Other mounting positions are possible, depending on the type of gearmotor and how its gearbox is lubricated.
If you require non-standard mounting (e.g. vertical), the ?rst step in choosing a gearmotor should be to call the manufacturer's technical support team.
Most fractional horsepower (FHP) gearmotors feature unvented gearheads that are lubricated for life, but some gearmotor types are oil lubricated and others are grease lubricated. If an oil lubricated gearmotor is mounted in a position other than horizontal, the chance of leakage increases in both static and dynamic conditions as the shaft seals wear. Grease lubricated products are less prone to leakage, but gear life can be compromised.
Oil provides more consistent lubrication to the gear teeth under load conditions. Grease provides greater flexibility in mounting and minimizes the risk of leakage. Despite advantages, oilis not always used in smaller fractional HP gearmotors because of these sealing considerations. If a non-standard mounting orientation is required, one possible alternative is a semi-fluid grease. Avoid mounting an oil-filled gearbox directly above the motor.
There is a shaft seal between the gearbox and the motor, but seals don't last forever. Eventually the lubricant will find a path into the motor. This could interfere with communication in a permanent magnet DC motor, the centrifugal starting switch in an AC split-phase motor, or the electronic commutator assembly in a brushless DC motor.
If the drive shaft must point upward, then the grease-lubricated, right angle gearmotor would be a better solution. If you require a non-standard mounting position, you may need to consider a custom gearmotor with modified lubrication or fill level.
2 Gearhead Efficiency
The worm gears found in most right angle gearboxes are less ef?cient and generate more heat than the spur or helical gear assemblies used in parallel shaft gearboxes. Therefore, right angle gearmotors often require a larger motor to match the output torque of a parallel shaft gearmotor with the same gear ratio. The ef?ciency of the worm gears is even worse at low speeds, providing less torque for starting and acceleration.
3 Self-Locking Right Angle Gearheads
"Self locking" right angle gearboxes can't be driven backwards by applying constant torque to the output shaft. These gearboxes can provide holding torque even when the power to the gearmotor is turned off.
This is desirable in applications where a load is expected to remain stationery even after the power to the gearmotor is turned off. However, this is not recommended as a "fail-safe" application solution because holding torque diminishes as the gears become worn or if shaft vibration occurs.
In applications where a load has to be held securely during a power-off condition, an external holding brake should be added to the motor or gearmotor. The brake is typically installed on the high-speed or accessory shaft (armature or rotor shaft) and not on the drive shaft (output shaft).
4 Noise and Load
Gearboxes are designed to be quiet, but some are quieter than others. In some cases metallic gears produce more noise than non-metallic gears, and helical gears tend to be quieter than spur gears. The noise from a gearbox is affected by the number of gear stages, the load, and armature/rotor input speed. Some smaller parallel shaft and planetary gearboxes use a Nylon-type ?rst stage gear as a way to reduce noise and vibration.
Worm gears are generally quieter than spur/helical gear reducers because they operate on a sliding action. Because the worm and gear teeth are under crushing rather than cantilever loads and more teeth are usually in contact, worm gears have higher resistance to shock loads than spur or helical gearing.
5 Gearmotor Life
Gearmotor life is affected by many factors. he obvious ones are operating speed, load, duty cycle, and ambient temperature. The higher any of these operating conditions are, the sooner the gearhead components will wear out. But there are also design details inside a gearbox that determine the gearmotor's life.
For example: the sliding action of worm gears is more dif?cult to lubricate and is less ef?cient than the rolling action of spur and helical gearing. Therefore, metallic worm and gear teeth will wear faster than metallic spur and helical gear teeth. Non-metallic gears will wear slower than metallic gears if no severe or shock loads are applied.
Oil lubricated gears will last longer than grease lubricated gears because oil provides more consistent lubrication to the gear teeth under load conditions. Another design detail that can affect gearmotor life are the motor shaft and output shaft ball bearings.
Possible causes of premature bearing failure can be foreign materials from dirty grease or ineffective seals, grease deterioration due to excessive temperature or external contamination, or electrical arcing due to shaft currents.
Gearmotors are typically designed to be mounted with the gearbox level with the motor, and with the drive shaft in horizontal orientation. Other mounting positions are possible, depending on the type of gearmotor and how its gearbox is lubricated.
If you require non-standard mounting (e.g. vertical), the ?rst step in choosing a gearmotor should be to call the manufacturer's technical support team.
Most fractional horsepower (FHP) gearmotors feature unvented gearheads that are lubricated for life, but some gearmotor types are oil lubricated and others are grease lubricated. If an oil lubricated gearmotor is mounted in a position other than horizontal, the chance of leakage increases in both static and dynamic conditions as the shaft seals wear. Grease lubricated products are less prone to leakage, but gear life can be compromised.
Oil provides more consistent lubrication to the gear teeth under load conditions. Grease provides greater flexibility in mounting and minimizes the risk of leakage. Despite advantages, oilis not always used in smaller fractional HP gearmotors because of these sealing considerations. If a non-standard mounting orientation is required, one possible alternative is a semi-fluid grease. Avoid mounting an oil-filled gearbox directly above the motor.
There is a shaft seal between the gearbox and the motor, but seals don't last forever. Eventually the lubricant will find a path into the motor. This could interfere with communication in a permanent magnet DC motor, the centrifugal starting switch in an AC split-phase motor, or the electronic commutator assembly in a brushless DC motor.
If the drive shaft must point upward, then the grease-lubricated, right angle gearmotor would be a better solution. If you require a non-standard mounting position, you may need to consider a custom gearmotor with modified lubrication or fill level.
2 Gearhead Efficiency
The worm gears found in most right angle gearboxes are less ef?cient and generate more heat than the spur or helical gear assemblies used in parallel shaft gearboxes. Therefore, right angle gearmotors often require a larger motor to match the output torque of a parallel shaft gearmotor with the same gear ratio. The ef?ciency of the worm gears is even worse at low speeds, providing less torque for starting and acceleration.
3 Self-Locking Right Angle Gearheads
"Self locking" right angle gearboxes can't be driven backwards by applying constant torque to the output shaft. These gearboxes can provide holding torque even when the power to the gearmotor is turned off.
This is desirable in applications where a load is expected to remain stationery even after the power to the gearmotor is turned off. However, this is not recommended as a "fail-safe" application solution because holding torque diminishes as the gears become worn or if shaft vibration occurs.

In applications where a load has to be held securely during a power-off condition, an external holding brake should be added to the motor or gearmotor. The brake is typically installed on the high-speed or accessory shaft (armature or rotor shaft) and not on the drive shaft (output shaft).
4 Noise and Load
Gearboxes are designed to be quiet, but some are quieter than others. In some cases metallic gears produce more noise than non-metallic gears, and helical gears tend to be quieter than spur gears. The noise from a gearbox is affected by the number of gear stages, the load, and armature/rotor input speed. Some smaller parallel shaft and planetary gearboxes use a Nylon-type ?rst stage gear as a way to reduce noise and vibration.
Worm gears are generally quieter than spur/helical gear reducers because they operate on a sliding action. Because the worm and gear teeth are under crushing rather than cantilever loads and more teeth are usually in contact, worm gears have higher resistance to shock loads than spur or helical gearing.
5 Gearmotor Life
Gearmotor life is affected by many factors. he obvious ones are operating speed, load, duty cycle, and ambient temperature. The higher any of these operating conditions are, the sooner the gearhead components will wear out. But there are also design details inside a gearbox that determine the gearmotor's life.
For example: the sliding action of worm gears is more dif?cult to lubricate and is less ef?cient than the rolling action of spur and helical gearing. Therefore, metallic worm and gear teeth will wear faster than metallic spur and helical gear teeth. Non-metallic gears will wear slower than metallic gears if no severe or shock loads are applied.
Oil lubricated gears will last longer than grease lubricated gears because oil provides more consistent lubrication to the gear teeth under load conditions. Another design detail that can affect gearmotor life are the motor shaft and output shaft ball bearings.
Possible causes of premature bearing failure can be foreign materials from dirty grease or ineffective seals, grease deterioration due to excessive temperature or external contamination, or electrical arcing due to shaft currents.
Key: Vertical 3 Phase ac induction motors, electric motor, Vertical Inverter Duty motor, DC Brake motor Oil Pressure Motor, helical gear motor, AC mini Induction DC gear motor, Gear reducer motor series, NMRV NRV worm reducer series, Worm reducer series, Horizontal Inverter duty, worm gear series, ac motor, vertical gearmotor, helical horizontal gearmotor, gear reduce motor, bevel gearmotor, cyclo gear motor, NMRV gear motor, worm reducer
Newer articles
- Follow instructions to use the speed reducer motor (12/08/2018)
- What is the difference between a squirrel cage motor and a wound-rotor (slipring) induction motor? (13/08/2018)
- Why electric motors fail (13/08/2018)
- Causes of faults in electric motors and their effects (14/08/2018)
- What are Features, Benefits and Use of Gear Boxes and Geared Motors? (02/08/2018)
- AC Motor Overview (20/08/2018)
- Advantages and disadvantages of different types of gears (01/09/2018)
- How to Select a Gearmotors (01/10/2019)
- What is a DC Motor? (03/06/2019)
- What are Brushless DC Motors (31/05/2019)
Older articles
- Basic Structure Of Gear Motor Reducer (07/07/2018)
- Fundamentals of Hydraulic Motors (20/07/2018)
- Worm gear box and Electric motor (18/07/2018)
- What are common gearmotor types and variations? (12/07/2018)
- The Importance Of Choosing The Right Gearmotor (12/07/2018)
- The Advantages of Intermittent Duty Motors (12/07/2018)
- How to Size and Select a Gearbox: A Motion Engineer’s Guide (12/07/2018)
- Tips for Selecting Your DC or AC Gear Motor (12/07/2018)
- How to Select the Right Gear motor (12/07/2018)
- What is Gear Box? What are Main Components of Gear Box? (12/07/2018)
Join